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Alzheimer’s disease (AD) is characterized by progressive deterioration of brain function
among elderly people. Studies revealed aberrant correlations in spontaneous blood
oxygen level-dependent (BOLD) signals in resting-state functional magnetic resonance
imaging (rs-fMRI) over a wide range of temporal scales. However, the study of the
temporal dynamics of BOLD signals in subjects with AD and mild cognitive impairment
(MCI) remains largely unexplored. Multiscale entropy (MSE) analysis is a method for
estimating the complexity of finite time series over multiple time scales. In this research,
we applied MSE analysis to investigate the abnormal complexity of BOLD signals using
the rs-fMRI data from the Alzheimer’s disease neuroimaging initiative (ADNI) database.
There were 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and
29 AD patients. Following preprocessing of the BOLD signals, whole-brain MSE maps
across six time scales were generated using the Complexity Toolbox. One-way analysis
of variance (ANOVA) analysis on the MSE maps of four groups revealed significant
differences in the thalamus, insula, lingual gyrus and inferior occipital gyrus, superior
frontal gyrus and olfactory cortex, supramarginal gyrus, superior temporal gyrus, and
middle temporal gyrus on multiple time scales. Compared with the NC group, MCI
and AD patients had significant reductions in the complexity of BOLD signals and AD
patients demonstrated lower complexity than that of the MCI subjects. Additionally,
the complexity of BOLD signals from the regions of interest (ROIs) was found to
be significantly associated with cognitive decline in patient groups on multiple time
scales. Consequently, the complexity or MSE of BOLD signals may provide an imaging
biomarker of cognitive impairments in MCI and AD.

Keywords: multiscale entropy, Alzheimer’s disease, mild cognitive impairment, blood oxygen level-dependent
signals, dynamic complexity
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INTRODUCTION

Functional connectivity (FC) of spontaneous blood oxygen level-
dependent (BOLD) signals in functional magnetic resonance
imaging (fMRI) has become an important tool for probing
brain function changes in normal aging and neurodegenerative
diseases. However, relatively few studies have investigated the
temporal dynamics of BOLD signals and its relations with
pathologic changes in neurophysiology (Sporns et al., 2000;
Friston et al., 2003; Wu et al., 2012). As the most complex organ
of the human body, the human brain regulates multifaceted
actions with billions of neurons and synapses (Fox et al.,
2007). Therefore, the BOLD signals possess complex temporal
fluctuations, which could be imitated by nonlinear dynamical
processes (Soltysik et al., 2004; Stephan et al., 2008; Yan et al.,
2017).

Over the past few years, several statistical methods have
been applied to quantify the temporal dynamics of physiological
systems. A widely used non-linear statistical method is sample
entropy (SE) proposed by Richman and Moorman (2000). SE
improved approximate entropy (ApEn) proposed by Pincus
(1991), by resolving the problem of erratic results due to vector
self-matching. Many studies evidenced the effectiveness of SE in
the complexity analysis of time series data of biological systems
(Sokunbi et al., 2013, 2014). However, recent studies found that
neural signals in the brain possess correlations over a wide
range of temporal and spatial scales, stemming from long-range
interactions (Costa et al., 2005; Peng et al., 2009; Morabito et al.,
2012). Therefore, SE may not be adequate to fully capture the
complexity of neural signals by only calculating signal entropy
on a single scale.

The multiscale entropy (MSE) was proposed (Costa et al.,
2002) to investigate the dynamic complexity of a time
series across multiple temporal scales. Several studies have
demonstrated the efficacy of MSE for quantifying the complexity
of BOLD signals in aging (Yang et al., 2013; Smith et al.,
2014). Yang et al. (2013) employed MSE analysis to investigate
the complexity of BOLD signals between the younger and
older groups, and found significant decreases in MSE in older
subjects. Smith et al. (2014) explored the effect of healthy
aging on the entropy of resting-state fMRI (rs-fMRI) using
MSE analysis, and the results revealed enhanced contrast
between healthy young and aged volunteers at longer time
scales. However, the dynamic complexity of BOLD signals

in neurodegenerative diseases across multiple temporal scales
remains largely unexplored.

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive deterioration of cognitive and
behavioral function (Ballard et al., 2011). Mild cognitive
impairment (MCI) is a neurological disorder occurring before
the onset of early AD as an intermediate stage at a high risk
of developing AD (Petersen et al., 1999; Belleville et al., 2011).
A few studies found decreased complexity of BOLD signals in
AD by using single-scale entropy analysis (Liu et al., 2013; Wang
et al., 2017). However, the complexity alterations of BOLD signals
in MCI and AD patients across multiple time scales remain
unclear.

We obtained BOLD rs-fMRI data from the Alzheimer’s disease
neuroimaging initiative (ADNI1) database, including 30 normal
control (NC), 33 early MCI (EMCI), 32 late MCI (LMCI), and
29 AD subjects. MSE maps of the four groups across multiple
time scales were calculated and the clusters with significant MSE
differences were identified. We then examined the relationships
between MSE values and scores of cognitive assessments on all
time scales. Finally, we investigated the relationship between MSE
and gray matter volume (GMV) on all time scales.

MATERIALS AND METHODS

Participants
A total of 124 subjects were selected from ADNI-2 database,
including 30 NC subjects (aged 74.18 ± 5.96 years; 19 females;
education: 16.8± 2.0 years), 33 EMCI subjects (aged 72.01± 5.87
years; 16 females; education: 15.5 ± 2.4 years), 32 LMCI subjects
(aged 72.57 ± 8.16 years; 13 females; education: 16.5 ± 2.1
years), and 29 AD subjects (aged 72.33 ± 7.26 years; 18 females;
education: 16± 2.7 years). For each subject, there were cognitive
assessments including Mini-Mental State Examination (MMSE),
Clinical Dementia Rating (CDR), and Functional Activities
Questionnaire (FAQ). Table 1 summarizes the demographic and
clinical characteristics of the participants.

Data Acquisition and Data Processing
All subjects went through resting-state BOLD fMRI scans with
their eyes closed on a 3.0 T scanner (Philips Medical Systems)

1http://adni.loni.usc.edu/

TABLE 1 | Demographic and clinical characteristics of the participants.

NC EMCI LMCI AD p-value

Age (years) 74.18 ± 5.96 72.01 ± 5.87 72.57 ± 8.16 72.33 ± 7.26 0.505

Sex (M/F) 11/19 17/16 19/13 11/18 0.732

Education (years) 16.8 ± 2.0 15.5 ± 2.4 16.5 ± 2.1 16 ± 2.7 0.418

MMSE 28.9 ± 1.7 27.59 ± 2.02 26.96 ± 2.69 21.0 ± 3.5 <0.001

FAQ 0.14 ± 0.44 3.03 ± 4.50 4.07 ± 4.70 15 ± 7.47 <0.001

CDR 0 0.5 0.5 0.84 ± 0.23 <0.001

Data are given as the mean ± standard deviation (SD).
The p-values were obtained by one-way ANOVA.
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using the following parameters: repetition time (TR) = 3000 ms;
echo time (TE) = 30 ms; slice thickness = 3.3 mm; flip angle = 80◦;
slice number = 48, and 140 time points.

Resting-state fMRI data were preprocessed using Statistical
Parametric Mapping (SPM122), Data Processing and Analysis
for (Resting-State) Brain Imaging (DPABI; Yan et al., 2016) and
the rs-fMRI Data Analysis Toolkit (REST 1.8; Song et al., 2011)
packages. The following steps were performed: removing the
first 10 time points; slice-timing correction; image realignment;
normalization to the Montreal Neurological Institute (MNI)
space (resampled into 3 mm × 3 mm × 3 mm voxels). The
linear trends of time courses were removed, and the effect of
nuisance covariates was removed by signal regression using
the global signal, the motion parameters, the cerebrospinal
fluid (CSF) and white matter (WM) signals. Temporal filtering
(0.01 Hz < f < 0.2 Hz) was applied. Finally, each voxel time
series was standardized to a mean of zero and standard deviation
of unity.

The analysis of the GMV was performed according to
the voxel-based morphometry (VBM) protocol using DPABI.
The VBM procedure involves the segmentation of the original
anatomic MRI images in gray matter (GM), WM, and CSF
tissues, followed by GM image normalization to templates
in stereotactic space to acquire optimized normalization
parameters, which were applied to the raw images. Finally, GM
images were smoothed using a 6-mm full-width at half-maximum
(FWHM) Gaussian kernel.

MSE Theory
Multiscale entropy is based on the theory of SE over a range of
scales and consists of two steps (Costa et al., 2002).

(1) The coarse-graining procedure of time series represents
the system dynamics on different scale factors. Given time series
{xi, i = 1, 2, . . . , N}, for the time scale l, the coarse-grained time
series {yl

} is calculated as follows:

yl
j =

1
l

jl∑
i=(j−1)l+1

xi, 1 ≤ j ≤ N/l (1)

The length of new time series is N/l. For scale 1, the new time
series corresponds to the original time series.

(2) The SE for each coarse-grained time series is calculated.
Sample entropy (Richman and Moorman, 2000) is calculated

as:
SE(m, r, N) = − ln

Pm+1(r)
Pm(r)

(2)

where m is the sequence length of time points to be compared, r
is the radius of similarity, N is the length of the time series, and P
is the probability that points falling within r.

Multiscale entropy consists of a set of SE values under multiple
time scales, which reflects the complexity of time series on
multiple scales. MSE can be used to compare the complexity of
different time series, based on the specific trend of SE changes
with scales (e.g., complex time series show constant entropy over

2http://www.fil.ion.ucl.ac.uk/spm

various time scales, while random noise shows a marked decrease
in entropy at longer time scales; Wang et al., 2018).

MSE Calculation
We used the Complexity Toolbox3 [Laboratory of Functional
MRI Technology (LOFT), Department of Neurology, University
of Southern California] to calculate MSE of rs-fMRI data.

Three parameter values were set for the calculation of MSE,
including pattern length m, distance threshold r, and time scale
l. The point to be made is that the r value is generally correlated
with the standard deviation of the original time series (Lu et al.,
2015). Various theoretical and clinical applications have indicated
that, m = 1 or 2 and r = 0.1–0.35 of the standard deviation
of the original sequence, provides reasonable statistical validity
for calculating SE (Richman and Moorman, 2000). Because no
rigorous standard exists for choosing the parameters to calculate
SE, prior studies on SE analysis of biomedical signals have shown
inconsistent selection of parameters. For example, studies of
fMRI used various parameters, including m = 1 and r = 0.35
(Yang et al., 2013), m = 2 and r = 0.30 (Smith et al., 2014),
m = 2 and r = 0.15 (Yang et al., 2011). In addition, different
parameters were also used in the studies of EEG, including
m = 2 and r = 0.15 (Catarino et al., 2011), m = 2 and r = 0.25
(Xiang et al., 2015), m = 1 and r = 0.25 (Escudero et al., 2006).
In this study, MSE was calculated for each BOLD time series
based on different parameter pairs: (m = 2, r = 0.15), (m = 2,
r = 0.25), (m = 2, r = 0.30), (m = 2, r = 0.35), (m = 1,
r = 0.25), and (m = 1, r = 0.35) across the range of scales from
1 to 6.

Statistical Analyses
For every time scale, one-way analysis of variance (ANOVA)
was used to assess differences in MSE maps of BOLD signals
among four groups (NC, EMCI, LMCI, and AD) using REST
1.8. For multiple comparison corrections, a stringent statistical
significance level was employed by setting a voxelwise threshold
of p < 0.001 and a cluster threshold of p < 0.05 with a Gaussian
random field (GRF) correction among four groups after adjusting
for age, sex, and education differences.

Then, fivefold cross-validation was used for regions of interest
(ROIs) analyses. We divided the data into five independent
subsets. For each fold, we used one subset for selective analysis
after using other four subsets for selection (ANOVA). According
to the peak MNI coordinates (X Y Z), we extracted the average
MSE and GMV by using DPABI toolbox to define ROIs and
the radius of the spheres at all scales (8 mm). For each ROI,
differences on MSE values among four groups at all scales were
compared using ANOVA using Statistical Package for Social
Sciences (SPSS 20.0) software. Bonferroni’s post hoc pairwise test
on ANOVA was performed.

Spearman’s correlation was used to assess the relationship
between MSE and MMSE, FAQ, CDR, and GMV for four groups
using SPSS 20.0 software.

3http://loft-lab.org/index-5.html
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RESULTS

Demographic and Clinical
Characteristics
Table 1 summarizes the demographic and clinical characteristics
of the participants. The p-values were obtained by one-way
ANOVA. The results indicated no difference in age, sex, and
education across four groups. Significant differences (p < 0.001)
among four groups were found on the MMSE, FAQ, and CDR
scores.

Parameter Selection for MSE Calculation
The comparison was made by calculating MSE using six different
parameter combinations (m, r). All subjects’ MSE maps were
calculated across time scales from 1 to 6. We performed the
one-way ANOVA on MSE maps of four groups on every time
scale. Based on the final results, the findings using m = 2 and
r = 0.35 as the optimal parameter were mainly reported in
this study. Previous study has shown that the accuracy of the
calculation results is least dependent on the sequence length N
when m = 2 (Smith et al., 2014). Other results are presented
in Supplementary Data Sheet 1. For m = 2 and r = 0.15, four
clusters were significantly different among the four groups across
multiple time scales on scale 2, scale 3, scale 4, and scale 6
(Supplementary Table S1 and Supplementary Figure S1). Five
clusters were found on scale 2, scale 4, and scale 6 when m = 2
and r = 0.25 (Supplementary Table S2 and Supplementary
Figure S2). For m = 2, r = 0.30 and m = 2, r = 0.35, similar results
were found and nine clusters showed significant differences on
scale 2, scale 4, scale 5, and scale 6 (Supplementary Table S3
and Supplementary Figure S3). For m = 1, r = 0.25 and m = 1,
r = 0.35, however, only one consistent cluster was found (left
middle occipital gyrus) on scale 1 and no difference was found on
the rest scales (Supplementary Tables S4, S5 and Supplementary
Figures S4, S5).

Significant Differences on MSE Among
the Four Groups
Using m = 2 and r = 0.35, the result is presented in Figure 1.
The detailed information is summarized in Table 2. Significant
differences (p < 0.001, GRF correction) were found on the MSE
maps among the four groups on scale 2, scale 4, scale 5, and
scale 6. We found no significant difference on scale 1 and scale
3. On scale 2, one cluster was found: right thalamus (THA.R).
On scale 4, one cluster was found: left superior frontal gyrus
(SFGdor.L). We found two clusters on scale 5: right lingual gyrus
(LING.R) and right insula (INS.R). For the scale 6, five clusters
were found: right superior temporal gyrus (STG.R), left middle
temporal gyrus (MTG.L), right olfactory cortex (OLF.R), left
inferior occipital gyrus (IOG.L), and right supramarginal gyrus
(SMG.R).

We also extracted the mean MSE of whole brain (WB),
GM, WM, and CSF using the corresponding masks on all time
scales. Then, one-way ANOVA was performed to examine the
differences among the four groups. The result is presented in
Supplementary Table S6. Only GM showed a trend of entropy

difference (F = 2.283, p = 0.083) among four groups on scale 6.
Figure 2 shows the mean entropy curve of GM across the scale
of 1–6 for four groups as well as the differences between each
pair of the four groups on scale 6 (p < 0.05, two-sample t-test,
uncorrected).

Time Scales Analysis on MSE From
Scale 1 to Scale 6
We extracted the average MSE of 9 ROIs over multiple time
scales. Figure 3 displays the MSE curve across scale 1 to 6 among
four groups (NC, EMCI, LMCI, and AD) for nine ROIs. Each
group exhibited a drop in SE values with increasing scale. SE
values on scale 1 showed no difference among the four groups for
nine ROIs. For scale 2, there were two ROIs (THA.R and OLF.R)
showing significant differences among four groups. SFGdor.L,
INS.R, and OLF.R showed significant differences on scale 3. For
scale 4, there were six ROIs (SFGdor.L, LING.R, INS.R, MTG.L,
OLF.R, and SMG.R) showing significant differences among four
groups. There were four ROIs showing significant differences
(LING.R, INS.R, and IOG.L) on scale 5. On scale 6, there were
six ROIs showing significant differences (THA.R, STG.R, MTG.L,
OLF.R, IOG.L, and SMG.R) among four groups. Specifically,
OLF.R showed significant differences on four time scales (scale
2, scale 3, scale 4, and scale 6).

Comparison of MSE Among the Four
Groups
Multiscale entropy values of nine ROIs at all scales were
compared among the four groups (NC, EMCI, LMCI, and AD)
using ANOVA, and for MSE of ROIs with significant differences
among the four groups, Bonferroni’s post hoc pairwise test on
ANOVA was performed. Figure 4 displays the comparison of
MSE of nine ROIs at different scales between any two groups.
The results showed that, compared with NC subjects, patient
groups demonstrated reduced complexity. Specifically, the AD
group showed lower complexity than the NC group for all ROIs.

Compared with the NC group, the EMCI subjects had
significantly reduced MSE of BOLD signals in INS.R. The LMCI
subjects showed significantly decreased MSE in eight of the nine
ROIs except THA.R. Compared with the EMCI group, the LMCI
group showed decreased MSE in SFGdor.L while the AD group
showed decreased MSE in three ROIs (THA.R, MTG.L, and
OLF.R). In addition, THA.R had lower complexity in the AD
group than that in the LMCI group.

Relationships Between MSE and Clinical
Measurements
We performed Spearman’s correlations between MSE values
and the clinical measurements (MMSE, FAQ, and CDR) in
patient groups (MCI and AD). After corrections for multiple
comparisons, significant correlations were found.

Figure 5 shows the scatter plots between MSE values of BOLD
signals and clinical measurement scores (MMSE, FAQ, and CDR)
in patient groups in the significantly correlated brain regions.
On scale 2, MMSE was positively correlated with the complexity
of BOLD signals in THA.R (r = 0.354, p = 0.006). SFGdor.L
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FIGURE 1 | Surface-rendered images showed the differences between the control and patient groups after adjusting for age, sex, and education. The regions
showed significantly different brain regions among the four groups on scale 2, scale 4, scale 5, and scale 6. See Table 2 for a complete list of these regions
(threshold p < 0.001, GRF corrected).

TABLE 2 | Characteristics of the brain regions those were significantly different among the four groups across multiple time scales.

Scale Brain Region AAL.Abbr Peak MNI (X, Y, Z) Cluster voxels Voxel F-value

Scale 2 Thalamus THA.R ( 0, −9, 0) 120 8.817

Scale 4 Superior frontal gyrus SFGdor.L (−18, 54, 42) 81 7.043

Scale 5 Lingual gyrus LING.R (15, −51, −9) 82 7.948

Insula INS.R (33, −12, 6) 78 9.807

Scale 6 Superior temporal gyrus STG.R (60, −18, 0) 153 12.274

Middle temporal gyrus MTG.L (−66, −18, −3) 95 8.258

Olfactory cortex OLF.R (6, 21, −12) 139 10.959

Inferior occipital gyrus IOG.L (−54, −69, −9) 203 7.434

Supramarginal gyrus SMG.R (60, −33, 27) 81 7.177

The location coordinates are those of the peak significance in each region (p < 0.001, GRF corrected).

exhibited the significant positive correlation (r = 0.293, p = 0.030)
between the MSE values and MMSE scores on scale 4. The four
ROIs (INS.R, STG.R, IOG.L, and SMG.R) exhibited significant
positive correlations (r > 0.283, p < 0.048) between MSE and
MMSE scores on scale 6. Some trend correlations were also
found (p < 0.05, uncorrected) and the results are shown in
Supplementary Table S7.

As shown in Figure 5, the MSE values of THA.R exhibited
significant negative correlations (r = −0.344, p = 0.006) with the
FAQ scores on scale 2. OLF.R exhibited significant correlations
(r = −0.291, p = 0.042) between FAQ scores and MSE values
of BOLD signals in patient groups on scale 6. SFGdor.L,
LING.R, INS.R, and IOG.L exhibited trend correlations (p < 0.05,
uncorrected) between FAQ scores and MSE values on multiple
time scales (Supplementary Table S8).

After corrections for multiple comparisons, MSE values of
THA.R exhibited the significant negative correlation with the
CDR scores on scale 2 (r = −0.303, p = 0.024) and scale 3
(r = −0.286, p = 0.042). LING.R showed the significant negative
correlation between CDR scores and MSE values on scale 5
(r =−0.331, p = 0.012) and MSE values of SMG.R were negatively
correlated with CDR scores on scale 6 (r = −0.312, p = 0.018;
Figure 5). In addition, SFGdor.L, INS.R, STG.R, OLF.R, and
IOG.L exhibited trend correlations (p < 0.05, uncorrected)
between CDR scores and MSE values on multiple time scales.
Supplementary Table S9 summarizes the correlation results
between CDR scores and MSE values of BOLD signals in patient
groups.

We also performed Spearman’s correlations between MSE
values and the clinical measurements (MMSE, FAQ, and CDR)
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FIGURE 2 | (A) MSE curve across scale factor 1–6 in gray matter (GM) for four groups. Each point represents group average SE. (B) Mean SE values of GM in the
NC, EMCI, LMCI, and AD subjects on scale 6. Significant differences between each pair of the four groups (p < 0.05, two-sample t-test, uncorrected) are indicated.
The error bar represents the standard error of MSE within the group. ∗ indicates p < 0.05.

FIGURE 3 | MSE curve across scale factor 1–6 for four groups. Each point represents group average SE. The error bar represents the standard error of MSE within
the group. ∗ indicates p < 0.05. ∗∗ indicates p < 0.05. ∗∗∗ indicates p < 0.001.

for each group (NC, EMCI, LMCI, and AD). After corrections for
multiple comparisons, for the NC group, SMG.R exhibited the
significant negative correlation (r = −0.516, p = 0.048) between
MSE values and FAQ scores on scale 5. No correlation was

found between MSE values and MMSE, FAQ, and CDR scores
in the EMCI group on all scales. For the LMCI group, MSE
values of STG.R were positively correlated (r = 0.512, p = 0.030)
with MMSE scores and MSE values of MTG.R and IOG.L were
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FIGURE 4 | Mean SE values of the nine ROIs in the NC, EMCI, LMCI, and AD subjects on four time scales. Significant differences between pairs of groups after
Bonferroni correction (p < 0.05) are indicated. The error bar represents the standard error of MSE within the group. ∗ indicates p < 0.05. ∗∗ indicates p < 0.01. ∗∗∗

indicates p < 0.001.

negatively correlated (r < −0.485, p < 0.048) with FAQ scores.
STG.R exhibited the significant negative correlation(r = -0.488,
p = 0.048 between MSE values and CDR scores in the AD group.
Some trend correlations were also found (p < 0.05, uncorrected)
and the results are shown in Supplementary Tables S11–S14.

Relationships Between MSE and GMV
We extracted the average GMV values of nine ROIs for
four groups. Then, we explored the relationships between the
MSE and the GMV in patient groups. After corrections for
multiple comparisons, no significant correlation was found
between the complexity of BOLD signals and GMV values. But
the LING.R exhibited trend positive correlations (r > 0.209,
p < 0.043, uncorrected) between the MSE and the GMV in
patient groups on four time scales (scale 3, scale 4, scale 5,

and scale 6). STG.R exhibited a positive correlation (r = 0.203,
p = 0.050, uncorrected) between the MSE and the GMV on
scale 6 and MTG.L showed a positive correlation (r = 0.235,
p = 0.023, uncorrected) on scale 5. The results are presented in
Supplementary Table S10.

Correlation analyses for each group (NC, EMCI, LMCI, and
AD) were also performed between the MSE and the GMV
on all time scales. After corrections for multiple comparisons,
no significant correlation was found between the complexity
of BOLD signals and GMV values in the NC, EMCI, and
LMCI groups. Only SFGdor.L showed the significant positive
correlations in the AD group on scale 6. Some brain regions
exhibited trend positive correlations (p < 0.05, uncorrected)
between MSE values and GMV values in each group and the
results are presented in Supplementary Tables S11–S14.
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FIGURE 5 | Significant correlations between MSE of blood oxygen level-dependent (BOLD) signals and clinical measurement scores (MMSE, FAQ, and CDR) in
patient groups (p < 0.05, corrected). r is the Spearman correlation coefficient, and p indicates the level of statistical significance.

DISCUSSION

In this study, we employed MSE analysis to assess the complexity
of BOLD activity in AD and MCI patients from scale 1 to 6. We
discovered that the spontaneous BOLD signals of nine clusters
had significant differences among four groups on four time scales.
The significant MSE differences were mainly detected in the
occipital, frontal, temporal, limbic, and parietal lobes, which were
significantly correlated with clinical measurements in patient
groups from scale 2 to 6. These results suggest that the complexity
analyses using MSE of BOLD signals can provide information on
the temporal dynamics of neural signals across multiple scales
that are relevant to the cognitive impairments in MCI and AD.

The MSE Differences Among Four
Groups on Multiple Time Scales
This study found that MSE of BOLD activity exhibited significant
contrasts among four groups on four time scales (scale 2, scale

4, scale 5, and scale 6; Figure 1), mainly distributed in the
occipital lobe (IOG.L and LING.R), frontal lobe (SFGdor.L
and OLF.R), parietal lobe (SMG.R), temporal lobe (STG.R
and MTG.L), limbic lobe (INS.R), and the subcortical region
(THA.R). In the MSE analysis for nine ROIs over all time scales,
we found that three ROIs (SFGdor.L, INS.R, and OLF.R) had
significant differences on scale 3 (Figure 3). This means that
more useful information was found on multiple time scales.
This is consistent with previous reports using MSE analysis on
rs-fMRI and EEG signals that detected differences in entropy
on multiple time scales (Mizuno et al., 2010; Liu et al., 2013;
Yang et al., 2013; Mcbride et al., 2014; Smith et al., 2014;
Michalopoulos and Bourbakis, 2017). Particularly, as Figure 1
demonstrates, five clusters showed significant differences on
scale 6. More significant differences were found among the four
groups with increasing scales. As can be seen from Figure 3,
six ROIs showed prominent differences among the four groups
on scale 4 and 6. Based on the mechanism of MSE analysis,
at the shortest scale, the entropy is dominated by the high
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frequency fluctuations from random noise (Wang et al., 2018).
By filtering out these random fluctuations, the contrast in
entropy becomes larger at longer time scales (Smith et al.,
2014).

In this study, each of the nine ROIs was observed on a
single scale. In the process of calculating MSE, the key step is
to coarse-grain the time series to reflect the system dynamics on
different time scales, which means that, MSE mainly calculates
the complexity of high frequencies at low scales, while the
complexity of low frequencies is calculated at large scales. Our
results showed that different brain regions displayed differences
at different frequencies. Consisted with our result, Wang et al.
(2018) investigated the neurophysiological underpinnings of
complexity (MSE) of fMRI signals and their relations to FC
and the results showed that the associations between MSE
and FC were dependent on the temporal scales or frequencies
It has been proposed that each frequency band is generated
by different mechanisms and relates to different physiological
functions, higher frequency oscillations are confined to a small
neuronal space, whereas lower frequencies may reflect long-
range interactions (Buzsáki and Draguhn, 2004; Zuo et al.,
2010). More recently, studies on rs-fMRI have hypothesized that
frequency-dependent effects in different brain regions which
reflect different synaptic and functional characteristics that are
affected by the progression of cognitive impairment (He et al.,
2010; Yu et al., 2013; Wang et al., 2016; Zhou et al., 2016).
Hence, we propose that the observed complexity changes on
different time scales might represent different region or network-
dependent neuropathophysiological mechanisms in MCI and
AD.

We also analyzed the complexity of WB, GM, WM, and
CSF on all time scales. Only GM showed a trend of entropy
difference (F = 2.283, p = 0.083) among four groups on scale 6.
Many studies on the complexity analysis of rs-fMRI data found
global complexity differences in aging (Yang et al., 2013; Sokunbi
et al., 2015) and AD (Liu et al., 2013; Wang et al., 2017). Smith
et al. (2014) found greater age-related decline in average GM
complexity of rs-fMRI at longer time scales, and Liu et al. (2013)
found mean complexity of rs-fMRI in GM and WM decreased
with normal aging. Thus, the complexity of global brain activity
may decrease with age. For AD-related cognitive decline, Liu
et al. (2013) found that mean ApEn of GM showed a significant
positive correlation with MMSE scores in the cohort of familial
AD subjects, and Wang et al. (2017) found significant differences
(p < 0.05) in permutation entropy (PE) of GM and WM across
the four groups of ADNI data. Possibly due to differences in
data samples and complexity analysis methods, the MSE analysis
used in this study was only able to reveal a trend of entropy
difference (p = 0.083) among four groups in GM as well as
decreased complexity in the AD and LMCI groups compared to
that of the NC group at the statistical threshold of uncorrected
p < 0.05. In contrast, we found highly significant MSE differences
(p < 0.001, GRF corrected) in several brain regions on multiple
time scales. This is not surprising as the pathological process of
AD first affects the network of temporal, frontal, and parietal
regions before progressing to the whole GM and brain level.
Different complexity analyses may have different sensitivities in

detecting global and regional changes of neural complexity with
AD progression. This question awaits further investigation in
future studies.

Decreased Complexity and Cognitive
Decline in Patient Groups
Using the post hoc pairwise test on ANOVA, reduced complexity
in the AD group was detected in all ROIs compared with the NC
group (p < 0.05, Bonferroni corrected). In addition, MSE also
showed strong sensitivity in differentiating NC from EMCI (one
ROI), NC from LMCI (eight ROIs), EMCI from LMCI (one ROI),
EMCI from AD (three ROIs), and LMCI from AD (one ROI).
As can be seen from Figure 4, the complexity of BOLD signals
in most ROIs showed a gradually decline from NC to EMCI to
LMCI and to AD. Previous complexity studies of fMRI signals
also consistently reported reduced complexity in AD patients
compared to matched control subjects (Liu et al., 2013; Wang
et al., 2017). Liu et al. (2013) reported decreased complexities in
STG, MTG, and SMG in familial AD. Some of brain regions, such
as SFGdor, MTG, and IOG, were also reported in our previous
study using PE method to analyze the complexity of the same
ADNI dataset (Wang et al., 2017).

We performed correlation analyses between complexity of
BOLD signals in these brain regions with significant MSE
differences and cognitive function scores (MMSE, FAQ, and
CDR). These three clinical measurements provide quantitative
assessments of cognitive function and are widely used (Ciesielska
et al., 2016; Kaur et al., 2016; Kim et al., 2017). Higher scores
of MMSE indicate higher aptitude of cognition; low functional
performance is related to higher FAQ scores and the presence
of dementia is indicated by higher CDR scores. Our correlation
results showed that the average MSE of some brain regions was
significantly positively correlated with the MMSE scores and
significantly negatively correlated with FAQ scores and CDR
scores in patient groups (p < 0.05, corrected). This means that
lower MMSE and higher FAQ and CDR scores were observed in
MCI and AD patients who exhibited lower MSE in some brain
regions. Particularly, THA.R exhibited significant correlations
between MSE values and three clinical measurement scores
(MMSE, FAQ, and CDR) on scale 2. The MSE values of SMG.R
showed significant correlations with the MMSE and CDR scores
on scale 6. Previous fMRI studies suggested that THA and
SMG are closely related to cognitive dysfunction in healthy
aging and AD (Mevel et al., 2011; Yang et al., 2013; Xiaoying
et al., 2014; Raczek et al., 2017). Studies found that activity in
THA is associated with spatial working memory and memory
processing (Jankowski et al., 2013; Saalmann and Kastner, 2015;
Štillová et al., 2015; Hallock et al., 2016), and SMG is mainly
involved in language perception, phonological processing and
verbal working memory and processing (Hartwigsen et al.,
2010; Kheradmand et al., 2013; Deschamps et al., 2014). In
addition, as can be seen from Figure 5, significant correlations
between MSE and cognitive measurements were dependent on
the temporal scales. For example, we observed THA.R showed
associations between complexity and MMSE at high temporal
frequencies, and SMG.R exhibited significant correlations at low
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temporal frequencies. The results showed that different brain
regions displayed correlations at different frequencies and once
again corroborated the MSE theory that high and low temporal
frequencies may represent region or network-dependent different
neuropathophysiological mechanisms (Buzsáki and Draguhn,
2004; Zuo et al., 2010).

Potential Physiological Underpinnings of
Altered Complexity in Patient Groups
It has been suggested that physiological diseases are associated
with a loss of complexity in healthy systems (Lipsitz, 2004;
Pincus, 2010). AD is a neurodegenerative disorder characterized
by dementia and cognitive decline (Querfurth and Laferla, 2010).
The brain regions that we found to have reduced complexity
play important roles for cognitive functions. For example, the
lingual gyrus is believed to play a role in the analysis of logical
conditions and encoding visual memories. The superior temporal
gyrus is involved in social cognition processes and middle
temporal gyrus is mainly involved in the recognition of known
faces and episodic memory (Bigler et al., 2007; Acheson and
Hagoort, 2013). Some fMRI experiments have found proof that
the superior frontal gyrus is involved in self-awareness, sensory
system, and social cognitive processes (Goldberg et al., 2006). The
altered complexity of these brain regions in patient groups may be
associated with deterioration of brain function in these important
networks.

Further, AD is characterized by the presence of neuritic
plaques and neurofibrillary tangles, accompanied by widespread
cortical neuronal loss, and loss of connections between brain
systems (Sankari, 2010). This may degrade cortical and sub-
cortical connections, leading to cognitive and behavioral
disturbances. Many studies have reported that disrupted FC in
the AD group in THA, SFGdor, INS, STG, MTG, IOG, and SMG
(Zhang et al., 2009; Wang et al., 2010; Dennis and Thompson,
2014). Thus, this degeneration of both local and long-range
connections disrupts the functional coherence of brain activation,
decreasing the complexity of spontaneous brain activity.

In addition, we examined the relationships between MSE
and GMV in patient groups. After corrections for multiple
comparisons, no significant correlation was found between the
complexity of BOLD signals and GMV. But LING.R, STG.R,
and MTG.L exhibited trend positive correlations (p < 0.05,
uncorrected) between the MSE and the GMV in patient groups.
Many studies have also reported GM atrophy in these brain
regions in MCI and AD (Busatto et al., 2003; Karas et al., 2004;
Guo et al., 2010; Möller et al., 2013). In our previous study, we also
found that the complexity of these brain regions was related to
GMV and was associated with glucose metabolism (Wang et al.,
2017). More pathologies of AD may lead to lower complexity of
brain regions still requires further study.

Comparison of SE, PE, MSE, and
Multiscale PE
Sample entropy solved the problem of vector self-matching in the
ApEn defined by the Heaviside function and has been widely used
(Pincus, 1991; Richman and Moorman, 2000). PE is different

from SE, as PE calculates the probability of a symbolic sequence
of points in the phase space and the entropy value in the form of
Shannon information entropy (Bandt and Pompe, 2002). Many
researchers prefer to use SE and PE to study the complexity
of time series and obtain findings on a single scale (Sokunbi
et al., 2013; Berger et al., 2017; Wang et al., 2017; Aktaruzzaman,
2018). Compared with PE and SE, MSE and multiscale PE (MPE)
investigate the dynamic complexity of time series data across
multiple temporal scales, not only at the original time scale of 1
(Costa et al., 2002; Aziz and Arif, 2005; Ouyang et al., 2013).

In this study, we found significant complexity differences
among four groups on multiple temporal scales, especially on
longer time scales, due to MSE’s capability to average out short
time scale fluctuations (Smith et al., 2014; Yan et al., 2017). Thus,
compared with SE, researchers performed MSE for complexity
analysis obtained richer and more comprehensive information
in aging and neurodegenerative diseases (Humeauheurtier, 2016;
Shang, 2017). Our previous research investigated the abnormal
complexity of BOLD signals in MCI and AD patients using
PE analysis (Wang et al., 2017). Then, we also applied MPE
to the same dataset, but no significant difference was found
on longer scales (p < 0.005, GRF correction). Some studies
demonstrated that PE had better anti-noise performance and
thus, compared with SE, we got supplementary information in
detecting differences among four groups on scale 1 (Bandt and
Pompe, 2002; Nicolaou and Georgiou, 2012; Wang et al., 2017).
The coarse-grained procedures in MPE with large scale factors
may result in short data length, while PE requires more time
points to contain more states of the reconstructed sequence
(Bandt and Pompe, 2002). This may be the reason that we did
not detect the significant PE difference at longer time scales. As
a consequence, for our dataset, MPE had better performance at
short time scales, while MSE could provide more information on
multiple time scales. In the future, we will perform and compare
SE and PE analysis across multiple time scales on more rs-fMRI
datasets to further our understanding on this issue.

Limitation
A limitation of this study is the short BOLD time series used
for MSE analysis which may lead to potentially erratic entropy
estimation (Costa et al., 2002; Yang et al., 2013). In this study, we
performed the parameter selection for MSE calculation by using 6
different parameter pairs based on previous studies, not all of the
parameter pairs. The results of m = 2 and r = 0.35 were mainly
reported in this study. The selection of parameters may be related
to particular datasets, and different datasets may have different
optimal parameters.

CONCLUSION

Multiscale entropy is a powerful tool to quantify the nonlinear
information of a time series over multiple time scales through
the SE algorithm. This study applied MSE analysis to investigate
the abnormal complexity of BOLD signals across multiple time
scales in MCI and AD patients. Enhanced MSE differences were
detected among four groups which were significantly correlated
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with clinical assessments in patient groups at multiple temporal
scales. The MCI and AD patients demonstrated lower complexity
than normal controls and AD patients showed lower complexity
than MCI. These findings indicate that MSE of spontaneous
BOLD signals may provide an imaging marker of cognitive
impairment in MCI and AD.
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